Pirelli: Checking Into a Historic Existing Buildings Hotel

Kate Doherty

Since 1972, Steven Winter Associates, Inc. has been providing research, consulting, and advisory services to improve the built environment for private and public sector clients.

Our services include:

- Energy Conservation and Management
- Decarbonization
- Sustainability Consulting
- Green Building Certification
- Accessibility Consulting

We have over 100 staff across four office locations: New York, NY | Washington, DC | Norwalk, CT | Boston, MA

For more information, visit www.swinter.com
Outline

• Building overview & history
• Project Goals
• Net Zero
 • Mechanical challenges for electrification and reaching Net Zero
 • Kitchen energy consumption
 • Heat Recovery Ventilation
 • Electrification of domestic hot water
 • Renewables to offset building energy

• Passive House as a pathway towards Zero

Let’s check in at Hotel Marcel
Hotel Marcel

- **1967**: Designed by Modernist architect Marcel Breuer
- **1970-1988**: Owned/Operated by Armstrong Rubber
- **1988-2003**: Owned by Pirelli Tire Company—vacant
- **2000**: The building was added to the Connecticut State Register of Historic Places
- **2003-2019**: Owned by adjacent IKEA—vacant
- **2020**: Owner/architect Becker + Becker—redesign begins

Project Goals

- **Project Pursuing**
 - Net Zero
 - EnerPHit
 - LEED Platinum
 - Energy Star
 - UI (utility) incentives
 - Electrification

- **Historic Considerations**
 - Concrete panel façade
 - Window aesthetic
 - Original tile flooring

- Integrated Design—get everyone involved EARLY
Net Zero at Hotel Marcel

Net Zero – Energy Consumption

• **Goal** < 510,000 kWh/yr
 • Equates to a site EUI < 18.0 kBtu/sf.yr

KEY CONSIDERATIONS

• Reducing commercial kitchen energy use
• Reducing common area lighting energy
• Predicting annual average occupancy rates
• Ventilation controls
• Heat recovery on kitchen ventilation
• Electrification of domestic hot water (in addition to space heating)
Net Zero – Energy Consumption

- Goal < 510,000 kWh/yr
 - Equates to a site EUI < 18.0 kBtu/sf.yr

KEY CONSIDERATIONS
- Reducing commercial kitchen energy use
- Limiting common area lighting energy
- Predicting annual average occupancy rates
- Ventilation controls
- Heat recovery on kitchen ventilation
- Electrification of domestic hot water (in addition to space heating)

Kitchen Energy Use

- Coordination with the kitchen designer
 - List of equipment and electrical usage
 - Schedule for use of equipment
 - Exhaust hood specification
 - Possibility of all-electric appliances
Appliance Schedule

Kitchen Energy Use

Kitchen Electrification

- All electric possible? - YES
- Appliance choices
 - One less electric fryer
 - kettle use from 12hr/day -> 2hr/day
- savings of ~150,000 kWh/yr
- Menu
Kitchen Energy Use

Ventilation/ Heat Recovery

• Certified Type 1 Recirculation hood system
 • Does not require vent to exterior
 • Only compatible with electric appliances

SWA Podcast: It's Time to 86 Fossil Fuels in Commercial Kitchens with Chris Galarza

Electrification of DHW

• Load reduction measures
 • Low flow fixtures
 • Efficient recirculation pipe layout
 • Drain water heat recovery on shower drains

• Efficient heating strategy
 • 4 air-sourced heat pump water heaters (located indoors)
 • Supplemental electric tanks
 • 700 gallons of DHW storage

• Initial energy estimate = 48,000 kWh/yr (site EUI – 1.6 kBTU/sf.yr)
Use of Renewables

Energy Offset with Renewables

- PV (roof + carport arrays) covers 100% of building energy
- Demand response signals from utility grid
What is even better than using PV?

Not NEEDING as much PV to offset your building!!
Passive House: a Pathway to Lower Energy

Lower overall energy use = less renewables to reach Net Zero

What is Passive House (PH)?

- Emphasis on balanced ventilation
- First and foremost, PH is a building standard
- Attention to insulation continuity and reduction of thermal bridges
- Performance-based approach
- The most rigorous energy efficiency certification available
Goals of PH

- **Reduce energy** consumption/$
- **Reduce carbon** emissions
- **Provide superior** thermal comfort, indoor air quality, and acoustics
- **Increase durability** of building materials

PH Principles - Multifamily

- Performance based approach allows flexibility
- Same principals apply to all Passive House and will be required for certification
- The equation changes for multifamily buildings due to high density
- SWA adds two new principles for multifamily:
 1. Domestic Hot Water Design
 2. Efficient Lights and Appliances
- Heating and cooling systems are very important, but focus is on envelope and internal loads first
Lowering Energy with Passive House

- Continuous insulation and air barrier
 - Lower heat loss through envelope
- Airtight construction
 - Keep conditioned air in the building
- Primary Energy requirements w/ certification
 - Energy efficient mechanicals/appliances

Bonus:
- Building free of moisture concerns
- Comfort and IAQ

Historic Challenges

- Existing façade
 - Interior only insulation R-21 for EnerPHit
- Window limitations
 - Low profile-triple pane
- Existing steel structures/slab edges
 - 3D model
On Site Insulation

Breuer’s Drawings vs. Project Mockup

Steven Winter Associates, Inc.
Passive House Level Enclosure

- **Windows**
- **Shading Analysis in Sketchup / DesignPH**

Typical slab edge thermal bridge
- Condition modeled in 3D thermal modeling software
Thank you!

Contact Us
Steven Winter Associates, Inc.
61 Washington St, Norwalk, CT 06854

- Kate Doherty
- kdoherty@swinter.com
- 203.857.0200 x 2250
- www.swinter.com