

The Demand Charge Effect Simplified

Tucson Energy LSG -13 Rate

Energy (usage):

Day: \$0.054/kWh \$0.146/kWh Night: \$0.054/kWh

Demand: \$15.25/kW/Month

How big an effect is the Demand Charge??

Energy is 63% less expensive at night

Utilities with Demand above \$14 / kW

- ConEd
- SCE
- PG&E
- SDG&E
- LIPA
- Eversource
- HECO
- O&R (NY)
- Santee Cooper (SC)
- Austin Energy
- United Illuminating (CT)

- PSEG (NJ)
- Dominion (VA)
- Appalachian Power
- Forked Deer (TN)
- Delmarva
- City of Batavia (IL)
- Mon Power (WV)
- Potomac Edison
- Duke Carolinas
- Tucson Electric Power
- Lincoln Electric Service (NE)

- LG&E (KY)
- Hydro One (Qu.)
- Rocky Mountain Power (UT)
- Toledo Edison
- · Duke Indiana
- Consumers Energy (Mich.)
- NV Energy
- Arizona Public Service
- El Paso Electric
- Public Service of NM

Representative List - a small fraction

Many types of Energy Storage will be needed on both sides of the electric meter for Renewable Energy, Net Zero Buildings and the Grid to Function Reliably

Electric Meter

Grid Side
Pumped Hydro
Compressed Air
Fly Wheels
Super Capacitors

Building Side
Chemical Batteries
Thermal Mass (passive)
Thermal Batteries (active)

Energy Storage Options

Energy Storage Technology	Tech <u>Maturity</u>	Useful Eff (%)	Life (Yrs.)	Capital Costs (\$/kWh)
Pumped Hydro	mature	70-80	40+	310-380
Na-S Batteries Lead-acid Batteries Li-lon Batteries	mature mature new	80 85-90 80-90	5 7-15 7-10	650-700 500-750 450-1125
Flywheels	new	90	20	7800-9000
Compressed Air	demo	70-80	40+	80-150
Thermal Storage	mature	90-100+/-	50+	30-500

Thermal Energy Storage (TES) has low initial cost, high efficiency, and longer useful life

Conclusion

The best sustainable storage solution for the customer is to have
Thermal Batteries meet Thermal Loads and
Electric Batteries meet Electric Loads

