HOW TO GET TO ZERO: A MULTI-STATE COMPARISON OF ZERO ENERGY READY HOMES

Ian Blanding, Midwest Energy Efficiency Alliance Will Bryan, Southeast Energy Efficiency Alliance

About MEEA

We are a nonprofit membership organization with 160+ members, including:

- Utilities
- Research institutions
- o State and local governments
- Energy efficiency-related businesses

As the key resource and champion for energy efficiency in the Midwest, MEEA helps a diverse range of stakeholders understand and implement cost-effective energy efficiency strategies that provide economic and environmental benefits.

Agenda

- Energy Codes and Climate Zones
- RESNET HERS Data
- National Overview of Zero Energy Ready Homes
- ASHRAE 90.2
- Component-Level Strategies by Climate Zone
- Policy Implications and Next Steps

RESNET HERS Data

- Energy Raters collect more than seventy unique data points for each home to calculate a HERS Index score—a measure of the overall energy performance of the building.
- The HERS Index is measured on a scale from 0 to 100. The lower the score the more efficient the home. (A score of 100 is designed to represent the energy performance of a standard home of like size and type complying with the 2006 IECC).
- As of 2017, RESNET has audited more than two million homes in the United States
- Our dataset is based on all HERS-rated homes in the United States with a rating ≤48 from 2017 – present.

Zero Energy Ready Home

General Home Characteristics:

- Conditioned Area
- Onsite Power Generation
- Energy Use Intensity (EUI)

Building Envelope:

- Foundation Insulation
- Above Grade Wall Insulation
- Ceiling Insulation
- Window U-Factor and SHGC

Air Leakage

HVAC:

- Heating/ Cooling Efficiency
- % of Ducts Conditioned
- Duct Leakage

Other Key Components:

- % of High-Efficacy Lighting
- Ventilation Type

Standards Advisory Panel Recommendations

ASHRAE 90.2 – Zero Energy Ready

- International leadership standard
- On the path of supporting the ASHRAE Board of Directors vision for net zero or near zero energy buildings (NZEB) by 2030 2 current revision 50% improvement relative to a 2006 IECC baseline
- Address the energy aspects related to indoor environmental quality including comfort, moisture control, and indoor air quality
- Should not generally address the broad subject of sustainability
- Consider the energy aspects of meeting residential water needs
- Incorporate requirements that use cost effectiveness as a significant criterion
- Incorporate appropriate field performance metrics to measure compliance during construction
- Easy to use and easy to enforce
- Evaluate the use of renewable energy alternatives
- Fenestration backstops w/ PV

Source: Theresa Weston, Dupont Performance Building Solutions

ASHRAE 90.2 – Zero Energy Ready

ERI Target

Climate Zone*	90.2 Max ERI	2018 IECC Max ERI
1	43	57
2	45	57
3	47	57
4	47	62
5	47	61
6	46	61
7	46	58

SEE A
SOUTHEAST ENERGY EFFICIENCY ALLIANCE

*Climate zones o & 8 not listed

Other Key Requirements

- Maximum U-Factor/SHGC Table
- Air Leakage Max 5 ACH50
- Duct Leakage 4cfm25/100 sq. ft.
- HVAC Equipment Sizing
- Hot water pipe insulation
- Maximum Fixture Flow Rates
- High Efficiency Lights
- Air Leakage, Insulation, Fenestration backstops w/ PV

Climate Zone 1: ASHRAE 90.2

Climate Zone 3: Zero Energy

HERS/ERI ≤ 47				
Measure	Median Value	Measure	Median Value	
EUI (kBtu/sq. ft.)	18	Duct Conditioned (%)	100	
Conditioned Area (sq. ft)	3500	Duct Leakage Outside (%)	1.3	
Foundation (R-Value)	0 + 10	Duct Leakage Total (%)	4.0	
AG Wall (R-Value	19 + 1	Ventilation Type	Balanced	
Window (U-Factor)	.29	Efficient Lighting (%)	90	
Window (SHGC)	.27	Heating Efficiency (AFUE)	95.5	
Ceiling (R-Value)	38	Cooling Efficiency (SEER)	15	
Air Leakage (ACH50)	2.0	Onsite Power	56%	

Climate Zone 4: ASHRAE 90.2

Climate Zone 4: Zero Energy

HERS/ERI ≤ 47				
Measure	Median Value	Measure	Median Value	
EUI (kBtu/sq. ft.)	22	Duct Conditioned (%)	100	
Conditioned Area (sq. ft)	4000	Duct Leakage Outside (%)	.70	
Foundation (R-Value)	0 + 10	Duct Leakage Total (%)	5.5	
AG Wall (R-Value	20 + 1	Ventilation Type	Balanced	
Window (U-Factor)	.28	Efficient Lighting (%)	90	
Window (SHGC)	.26	Heating Efficiency (AFUE)	96	
Ceiling (R-Value)	49	Cooling Efficiency (SEER)	15	
Air Leakage (ACH50)	1.9	Onsite Power	1%	

Climate Zone 5: ASHRAE 90.2

Climate Zone 5: Zero Energy

HERS/ERI ≤ 47				
Measure	Median Value	Measure	Median Value	
EUI (kBtu/sq. ft.)	30	Duct Conditioned (%)	100	
Conditioned Area (sq. ft)	3900	Duct Leakage Outside (%)	.80	
Foundation (R-Value)	4.5+ 4	Duct Leakage Total (%)	2.0	
AG Wall (R-Value	20 + 1	Ventilation Type	Balanced	
Window (U-Factor)	.29	Efficient Lighting (%)	50	
Window (SHGC)	.30	Heating Efficiency (AFUE)	96	
Ceiling (R-Value)	49	Cooling Efficiency (SEER)	13	
Air Leakage (ACH50)	1.4	Onsite Power	4%	

Climate Zone 6 & 7 : ASHRAE 90.2

Climate Zone 6 & 7 : Zero Energy

Key Takeaways

- Varied pathways to get to Zero Energy
- Climate zone has a big influence on what measures are installed
- Zero Energy homes often rely on on-site power generation
- ASHRAE 90.2 levels is essentially ZER
 - o To get to ZE, builders add slight envelope improvements, advanced equipment and on-site generation

Use of Data/Policy Implications

- Which component-level approaches are widely-implemented and have significant market share in ZER homes?
- How do we leverage building energy codes (or other policies) to encourage ZER practices to be more widely adopted in new construction in a cost-effective manner?
- How effective are these practices in building truly zero energy homes?

Next Steps/ Further Analysis

- Expand to all 50 states
- Determine most cost-effective approach by Climate Zone
- Consult with RESNET and local energy raters
- Develop report for states and jurisdictions considering ZER or ZE Codes

Contact Info

Will Bryan
Built Environment Project Manager
wbryan@seealliance.org

lan Blanding
Building Policy Manager
iblanding@mwalliance.org

