

Integrating Utility and Consumer Goals for Synergistic Benefits 2019 Getting to Zero Conference, Session 5 Integrating Utility and Customer Needs: The Value of Grid-interactive Efficient Buildings

10 October 2019

About Tierra Resource Consultants, LLC

- Founded in 2013; based in Walnut Creek, California
- Multidisciplinary energy and sustainability consulting engineering firm serving clients across North America
- Tierra's consultants each leverage over three decades of energy industry experience
- Expertise includes engineering, economics, finance, strategy, resource planning and regulatory compliance
- Clients include:
 - Electric and gas utilities
 - Regulatory and governmental agencies
 - Industry research and advocacy groups
 - Energy service companies
 - Private sector companies
 - Design and construction firms

Integrating Utility and Consumer Goals for Synergistic Benefits

LEARNING OBJECTIVES:

Tierra Resource Consultants, LLCMarshall KeneippMark Wilhelm303-913-8113602-697-8942Marshall.Keneipp@TierraRC.comMark.Wilhelm@TierraRC.com

- 1. Expand scope from one ZNE/ZNC building to portfolio and grid to address multiple goals \rightarrow
 - a. Decarbonization
 - b. Electric system reliability and resource management
 - c. Energy system resilience
 - d. Cost reduction goals for consumers and utilities
- 2. Impacts of energy use + carbon reduction efforts on load shapes + demand management
- 3. Understand importance of utility avoided costs in ZNE/ZNC program planning
- 4. Assess optimal mix of the following strategies to achieve goals \rightarrow
 - a. Efficiency
 - b. On-site renewable generation
 - c. Demand management and battery storage
 - d. Building/transportation electrification
 - e. Integration with the electric grid

ASU climate neutrality commitments

- 1. Reach climate neutrality by 2025 (buildings) and 2035 (w/ transportation)
- 2. Attract students, professors, funding, and research
- 3. Create a new model to demonstrate how to reach climate neutrality
- 4. Achieve goals with transparency, best value assurance, and partnership

Over 10 years – EPCs and PPAs were leveraged to reduce ASU capital requirements by 75%

AMERESCO ?

Resulting energy and GHG emissions savings:

- 98.5 GWh/year
- 1.4 million therms/year
- 77,247 tonnes CO₂e/year

ARIZONA STATE UNIVERSITY: PROJECTS COMPLETED BY AMERESCO (2004-2013)	Year	Project Cost (USD)	EPC (3rd Party Funds)	Institutional Capital (ASU Funds)	PPA (3rd Party Funds)
Energy Performance Contract (EPC), Phase 1	2004	\$ 39,942,154	\$ 39,942,154		
Boiler & Burner Replacement	2006	\$ 2,600,000		\$ 2,600,000	
Combined Heat and Power Plant	2006	\$ 44,696,000		\$ 44,696,000	
Cooling Tower Replacement	2007	\$ 1,500,000		\$ 1,500,000	
Energy Performance Contract (EPC), Phase 2	2007	\$ 40,600,000	\$ 40,600,000		
Central Plant and Utility Distribution System	2008	\$ 15,800,000		\$ 15,800,000	
Solar PV Phase II / 6.24 MW	2009	\$ 52,427,939			\$ 52,427,939
Solar PV Phases III & IV / 3.66 MW	2011	\$ 22,179,159			\$ 22,179,159
Solar PV Phases VI and VII / 2.83 MW	2012	\$ 15,959,810			\$ 15,959,810
Solar Thermal Phase V / 2 MW	2012	\$ 10,800,000			\$ 10,800,000
Solar PV Phase V / 901 kW	2012	\$ 7,171,188			\$ 7,171,188
Solar PV Phase VIII / 1.3 MW	2013	\$ 7,594,749			\$ 7,594,749
HVAC Upgrades	2013	\$ 824,363		\$ 824,363	
Total Dollars Invested (USD)		\$ 262,095,362	\$ 80,542,154	\$ 65,420,363	\$ 116,132,845
Percentage of Total Dollars Invested			31%	25%	44%

Achieving aggressive GHG reduction goals requires financial creativity and "capital stacking":

- EPCs
- PPAs
- Maintenance funds
- Grants
- Incentives
- Partnerships
- Cap and Trade Programs
- Etc....

EPC = Energy Performance Contract

PPA = Power Purchase Agreement

BAU forecast of ASU energy costs -\$555M from 2014-2025

\$100

Electric Natural Gas Solar Electric Plant and Other Expenses Performance Contract Capital Fees Charge Back Credits

Backlog of deferred maintenance: cost by discipline (2015)

Take a comprehensive, integrated approach to transition ASU's building portfolio to greater energy efficiency

- Portfolio strategy at ASU
 - Leveraged existing knowledge, audits, interviews
 - Assessed assets, technical potential
 - Proposed NZE / near-NZE for all new buildings
 - Visited NREL to tour ESIF and to identify process changes for performance-based building delivery
 - Strategies:
 - Continuous commissioning (CCx)
 - Cross-cutting measures (CC)
 - Deep energy retrofits (DEEP)
 - Deep energy retrofits over time (DOT)
 - On-site renewables (REN)
 - Calculated potential energy efficiency improvements
 - Targeted level of efficiency improvement:
 - 28% better than baseline
 - 37% better than baseline

Innovation – Pilot Projects

AMERESCO Arizona State

- New Construction Super-Efficient Construction Standards and IPD Approach
- Clean Energy On-Site Renewable Energy Installations

ROCKY MOUNTAIN

Leverage microgrids to achieve utility and customer goals

- Customer Objectives
 - Improve grid reliability, redundancy, resiliency, and flexibility
 - · Gain experience designing and operating a microgrid
 - Discover associated capital and O&M requirements
 - Learn how microgrids can be used to reduce carbon emissions
 - Reduce energy costs, if appropriate
 - Learn about smart grids, DR, DER, renewable energy use and storage
 - Offer unique demonstration projects to benefit research and education goals

Resource Consultants, LLC

Microgrid Elements to Support Objectives

Leverage mix of tools and technologies to find the least-cost, grid-integrated approach to NZE/NZC

Resource Consultants, LLC

Roadmap components and strategies

Built Environment

- Highly-efficient new construction and renovations
- Reduce dependence upon natural gas
- Implement large, integrated energy upgrade programs

Supply & Infrastructure

- Increase efficiency
- On-site PV & solar thermal
- Energy storage
- Develop flexible microgrids
- Off-site renewables

Transportation

- Optimize to reduce vehicle miles traveled (VMT)
- Move to efficient vehicles
- Integrate alternatively-fueled vehicles & microgrid
- Offsets for air travel

Institutional Initiatives

- GHG Emissions Management System (GEMS)
- Enhance sustainable building guidelines
- Engagement / behavioral programs
- New financing & project delivery mechanisms

Climate neutrality roadmap: integrated approach drives results

Energy efficiency drives the economics of achieving climate neutrality

Best Case Mix – Results

	Economic Benefits:
	Reduce energy costs
	 Reduce deferred maintenance
_	 Attract students, investment, research
	 Improve asset utilization
-	 Reduce GHG with positive Net Present Value
	Social Benefits:
	 Position University as a Climate Leader
	 Attract other Climate Leader partners
_	 Lead transition to Low-Carbon Society
	 Integrate & drive higher-education mission
-	
	Environmental Benefits:
	Achieve significant GHG emissions reductions
	 Demonstrate path to low-carbon operations
	 Engage other leaders and multiply impact

NZE and Utility Planning Objectives

Core principles:

- 1. Ensuring Affordability
- 2. Achieving Decarbonization
- 3. Guaranteeing Grid Reliability

California Customer Choice; An Evaluation of Regulatory Framework Options for an Evolving Electricity Market (The "Green Book"), the California Public Utilities Commission.

Program Design Criteria – A Recent Project Example

The three-legged stool... PLUS

- Economic and workforce development *PLUS*
- Serving low income and disadvantaged communities *PLUS*
- Emergency preparedness

The Utility Challenge (Arizona Example)

Value of energy is <u>not</u> the same for all hours of the year

- Significant reduction in net load during the daytime, non-summer seasons from solar DG
- Low or negatively priced energy during mid-day with more expensive prices ramping to late afternoon/evening

A Balanced Approach to Utility Program Design is Required

- To meet goals, customerfacing utility programs require a balance mix of intervention strategies including EE, DERs, DR, and electrification
- Locational and time dependent benefits come into sharper focus
- Consideration of individual and aggregate load shape impacts is required

Analyze Hourly DSM/DER Savings Load Shapes

- 8,760 hourly breakdown of average DSM/DER <u>savings impacts</u> by:
 - End use and DSM measure
 - Segment/building type (i.e. dual fuel)
- Mapped to current and potential new DSM/DER programs
- Build savings loads shapes for each measure based on their 8760 hourly load shapes and use cases

Resource Value - Marginal Cost Heat Map

	Month											
Hour of Day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
12 AM												
1 AM												
2 AM												
3 AM												
4 AM												
5 AM												
6 AM												
7 AM												
8 AM												
9 A M												
10 AM												
11 AM												
12 PM												
1 PM												
2 PM												
3 PM												
4 PM												
5 PM												
6 PM												
7 PM												
8 PM												
9 PM												
10 PM												
11 PM												

Darkest shade represents the highest value hours for resource planning and the lightest shade represents the lowest value hours throughout the year.

Heat Map Numerical Value

1

Value of DSM/DER Savings Load Shapes

Residential Water Heating with Connected Heat Pump Water Heaters

Grid interactive HPWH dispatched by a utility program to help reduce early morning (6-9am) and late afternoon (6-9pm) peak demand while shifting energy use into midday hours to "fill the belly of the duck"

Measures with the Most Beneficial Load Shapes

Residential Load Shapes - Value of Load Impact

DER - Smart Tstat Pre-Cooling DER - Res Batteries DER - Grid Interactive HPWHs **DER - Water Heater Timers** Cooling - Dual Fuel WHouse - Dual Fuel LI Weatherization Heat Pumps WHouse - All Elec Shade Trees WHouse - Behav Plug Load Refrigerator VSD Pool Water Heating Lighting Night Light

From a utility resource planning perspective:

- Darkest shade shows percent of the most desirable savings, lightest shade shows least valuable
- Dotted lines show measures that provide <10% of desirable times, or >20% during least valuable.

■ Desirable ■ Mid □ Undesirable

An Evolving Utility Sector Paradigm

Current Planning Trend

- A focus on time and locational value of savings
- Time valued EE and DER at targeted hours
- Emphasis on demand management
- What about solar? + storage?
- Planning for electrification

Carbon Free Future

- Continued focus on time and locational value of savings
 - EE all the time and lots of it
 - As much solar as we can get + storage
- Continued emphasis on smart demand management
- Strategic electrification...how to integrate transportation?

Cost-effectiveness Testing

Which tests to use when?

The California Standard Practice Manual lays out test methods that have been the standard for analyzing the cost-effectiveness of utility programs for decades.

The Total Resource Cost (TRC) Test has been the benchmark standard in CA for <u>energy efficiency</u> programs...but was not designed to be used with electrification/DER/decarbonization programs.

The Resource Value Test (RVT) developed by the National Efficiency Screening Project provides a structured but flexible alternative approach to assessing the cost-effectiveness of NZE programs grounded in the utility's policy priorities.

	Participant Cost Test	Rate Impact Measure Test	Total Resource Cost Test	Societal Cost Test	Program Admin. Cost Test	Resource Value Test
Program Admin. Costs						
Incentives/Rebates						
Incr. Supply Costs						
Net Participant Costs						
Bill Increases						
Revenue Loss						
Avoided Costs						
Bill Reductions						
Revenue Gain						
Tax Credits						
Environmental Benefits						
Economic Development						
Reduced Arrearages/Disc.						
		Benefits				
		Costs				

Thank you!

Marshall Keneipp 303-913-8113 Marshall.Keneipp@TierraRC.com Mark Wilhelm 602-697-8942 Mark.Wilhelm@TierraRC.com